Mark scheme – Analytical Techniques

Question n	Answer/Indicative content	Marks	Guidance	
1	C=C/alkene peak in region 1620-1680 cm ⁻¹ \checkmark O–H/alcohol peak in region 3200-3600 cm ⁻¹ \checkmark	2 (AO3.2× 2)	LOOK ON THE SPECTRUM for labelled peaks which can be given credit IGNORE references to C-O at 1000cm ⁻¹	
	Total	2		
2	 Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5–6 marks) The candidate gives thorough explanations of both spectra, and correctly identifies X and Y with a correct equation. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3–4 marks) The candidate attempts all three scientific points but explanations are incomplete. OR Explains two scientific points thoroughly with few omissions. AND Attempts a feasible structure based on deduction from correct <i>M</i>_i. There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence Level 1 (1–2 marks) The candidate gives a simple description based on at least two of the main scientific points. OR Gives a thorough description and explanation of one of the scientific points. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. O marks No response or no response worthy of credit. 	6 (AO2.5× 1) (AO3.1× 2) (AO3.2× 3)	Indicative scientific points LOOK AT THE SPECTRA for labelled peaks Mass Spectrum • M ⁺ or molecular ion of 86 • m/z = 43 shows CH ₃ CO ⁺ OR C ₃ H ⁺ IR Spectrum • IR shows no broad absorption at 2500–3300 cm ⁻¹ so no O–H bond AND not a carboxylic acid • IR shows absorption at 1700 cm ⁻¹ for C=O bond OR indicates a ketone/aldehyde present Identification and Equation • X must be a secondary alcohol, since refluxing a secondary alcohol with acidified potassium dichromate (VI) forms a ketone OR primary alcohol → carboxylic acid AND tertiary alcohol would not be oxidised. • X is (CH ₃) ₂ CHCHOHCH ₃ OR compound E OR 3- methylbutan-2-ol • Y is (CH ₃) ₂ CHCOCH ₃ OR 3- methylbutan-2-one Equation (CH ₃) ₂ CHCOCH ₃ + H ₂ O Examiner's Comments	

					 * This was a challenging problem- solving question, relying on candidates to make use of all of the information provided to determine the structure. Very few candidates made no attempt at all at this question. The most common error was incorrectly identifying the peak at 3000 cm⁻¹ as O- H from a carboxylic acid, despite it being indicated on the data sheet that this would be a broad peak. It suggested that candidates were not familiar with looking at spectra and understanding what data it gave. Candidates should also be reminded when answering these types of question that they should give the structures, not just molecular formulae, where possible.
			Total	6	
3	а	i	Molecular mass √	1(AO1.1)	IGNORE 'relative' IGNORE 'molecular ion' alone, answer must relate to mass ALLOW <i>M</i> _r / molar mass Examiner's Comments This was generally well answered. The most common incorrect answer was atomic mass.
		ii	Y: CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ +√ Z: CH ₃ CH ₂ CH ₂ +√ <i>If positive charge is missing</i> but the structures of Y AND Z are correct, award one mark	2(AO3.2 ×2)	FOR ONE MARK ALLOW C ₅ H ₁₁ ⁺ AND C ₃ H ₇ ⁺ ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous Examiner's Comments Most students gained one mark on this question as they omitted the + sign or wrote the molecular formula instead of the structural formula.
	b	i	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1(AO1.1)	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous <u>Examiner's Comments</u> This was well answered by most candidates

	ii	Similarity Both have a peak at (<i>m</i> / <i>z</i> =) 198 (X) OR 71 (Y) OR 29 √ Difference 2-iodo-2-methylbutane has no peak at (<i>m</i> / <i>z</i> =) 43 (Z) √	2(AO3.2 ×2)	ALLOW same molecular ion peak / <i>M</i> _r IGNORE statements where no specific ion peak is suggested e.g. "different ion peaks" Examiner's Comments Most candidates answered the similarity part correctly, many wrote vague answers to the difference and were not specific. A common error focused on
		Tatal		the peak at m/z = 71, very few recognised that the Z peak at 43 would not be present for 2-iodo-2- methylbutane
		Total	6	
4	i	ANNOTATE ANSWER WITH TICKS AND CROSSES Curly arrows 2 marks curly arrow from OH- to C atom of C-Br bond \checkmark dipole shown on C-Br bond, C ⁵⁺ and Br ⁵⁻ , AND curly arrow from C-Br bond to Br atom $c_{H_5}^{C_{I}}$ $c_{I_5}^{I_5}$ IGNORE incorrect R groups for curly arrow marks IGNORE presence of Na*/Na but OH ⁻ needed i.e. Na*OH ⁻ ; NaOH ⁻ can be allowed with correct use of curly arrow Products 1 mark Correct organic product AND Br ⁻ \checkmark $c_{PH_5}^{I_5} - OH + Br^-$ IGNORE presence of Na* but Br ⁻ needed i.e. Na*Br ⁻ /NaBr ⁻ can be allowed with correct use of curly arrow	3	1st curly arrow must • go to the C of C-Br AND • start from, OR be traced back to any point across width of lone pair on O of OH ⁻ $(:\overline{OH} : OH :$

Use curly arrow criteria in guidance above

Examiner's Comments

As with 25(a)(i), this question rewarded the well-prepared candidate. The large number of proposed mechanisms showed little resemblance to the accepted mechanism for nucleophilic substitution. Mechanisms were often seen showing curly arrows going in the wrong direction and between the wrong bonds and atoms, charges and dipoles were often incorrect, and partial changes used where full charges were required.

Two exemplars are shown. The first exemplar shows clear curly arrows, the role of the lone pair and all charges correct. The second exemplar shows a typical muddled response. Although the curly arrow from the hydroxide ion has been accurately drawn, the hydroxide ion has a partial charge rather than a charge. There is also no curly arrow showing breaking of the C–Br bond. The only mark available is for the correct organic product and a Br⁻ ion.

Some mechanisms were so poor that it was impossible to credit many candidates with any marks. Writing mechanisms is an important skill in organic chemistry and it is recommended that candidates learn and practice their writing.

Exemplar 7

				(b) An alcohol can be prepared by hydrolysing the haloalkane $C_{a}H_{b}CHBrCH_{a}$ with aque sodium hydrolode. (i) Outline the mechanism for this reaction. Show curly arrows and relevant dipoles. $H^{H,2}$ $H^{H,2}$ H^{H
	1	Disappearance of peak at 500-800 cm ⁻¹ OR C–Br peak √ Appearance of peak at 3200-3600 cm ⁻¹ OR alcohol O–H peak	2	ALLOW value within range 500–800 cmcm ⁻¹ ALLOW value within range 3200–3600 cmcm ⁻¹ DO NOT ALLOW responses that only describe the spectrum shownExaminer's CommentsThis part discriminated very well with able candidates identifying that the absorption for the C–Br bond would disappear, with a new peak appearing for the alcohol O–H bond. A significant number of candidates did not seem to understand what was required, with many interpreting the spectrum as that of the alcohol, rather than predicting how the spectrum would change during the reaction. A common error was to interpret the absorption for a C–H bond at ~3000 cm ⁻¹ as that of an O–H bond.
		Total	5	
5		 Please refer to the marking instructions on page 5 of the mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) A comprehensive description including most of the evidence to justify the correct structure of F (accept <i>cis</i> or <i>trans</i>). There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) The candidate attempts all three scientific points, but explanations are incomplete. OR Explains two scientific points thoroughly with few omissions. AND an attempt at a feasible structure based on deduction from 	6	LOOK AT THE SPECTRA for labelled peaks Indicative scientific points may include: $\frac{\text{Empirical formula}}{\text{element}}$ • empirical formula = C4H ₆ O $\frac{\frac{\text{element}}{C} \frac{96 \text{ mass}}{68.6} \frac{\text{Ar}}{12} \frac{\text{sc}}{5.72} \frac{4}{4}}{\frac{\text{H}}{8.6} \frac{1}{1.63} \frac{8.60}{1.43} \frac{6}{1}}$ IR and spectra and molecular formula • infrared absorption; 1630–1820 cm ⁻¹ , due to C=O

evidence.

correct molecular formula

Level 1 (1-2 marks)

scientific points.

omissions.

OR

The correct empirical formula

There is a line of reasoning presented with some structure. The

information presented is relevant and supported by some

AND a simple description based on at least one of the main

The candidate explains one scientific point thoroughly with few

There is an attempt at a logical structure with a line of reasoning.

0 marks No response or no response worthy of credit.

The information is in the most part relevant.

(aldehyde/ketone/carbonyl group)

- molar mass = 70 g mol⁻¹ (mass spectrum molecular ion peak m/z = 70)
- molecular formula = C₄H₆O

Functional groups, structure and stereochemistry

- alkene / C=C
- aldehyde / -CHO (C₃H₅⁺ fragment)
- mass spectrum; peak at 41 due to C₃H₅⁺ (loss of CHO)
- *E/Z or cis-trans* isomer: *E/Z or cis-trans* isomer:

Examiner's Comments

This question was a good discriminator. Most candidates were able to deduce the empirical formula and the C=O peak on the IR spectrum. However, many mistook the C-H peaks around 3000 cm⁻¹ for an alcohol O-H peak or assumed from the empirical formula that it was an alcohol so made the spectra 'fit' their hypothesis. At AS, the exposure of candidates to IR and spectra is not as comprehensive as in the second year of A Level and this was evident. There was very little annotation of the spectra and candidates should be encouraged to do this as it is helpful to them in their deductions (and to the examiners for crediting marks). Analysis of the IR spectrum was much more detailed than the mass spectrum. Most candidates just referred to the molecular ion peak and made no attempt, or an incorrect attempt, at discerning the peak at 41. Those that did quickly realised what the structure was and gained 5 or 6 marks. Some candidates, despite ascertaining that a trans stereoisomer should be drawn,

Total

Exemplar 5
In the mass spectrum, the peak with the greatest relative intensity is caused by the loss functional group from the molecular ion of compound F. H H H, $e^{e_{c}}$ - c = e
Determine the structure of compound F. H
Explain your reasoning and show your working.
$\begin{array}{cccc} C & : H : Q &= & \underline{63.6} & : & \underline{3.6} & : & \underline{22.8} \\ & & & & & \\ 12 & & & & 16 \end{array}$
= 5.716: 8.6 ; 1-425
= 4-011: 6-03: 1
= 4.011 + 16.03 - 1 Empirical formula of compound F is Catter. So the molecular mass of compound F is 30 g.mol ⁻¹ . So the molecular mass of compound F is 30 g.mol ⁻¹ . So the molecular formula of compound F is 30 g.mol ⁻¹ . The infrared spectrum shows on absorbance peak with the range 1630-1820cm ⁻¹ . Inditating the presence of a C=0 band. There is no oth band, so companed. So the colored spectrum active formula is no other band, so companed. So the colored spectrum is no other band, so companed. So the colored spectrum is no other band, so companed. So the colored spectrum is no other band, so companed. So the colored spectrum is no other band, so companed. So the colored spectrum is no other band, so companed. So the colored spectrum is no other band is not a colory it is a transition provided to the duble band are opposite each ether $\frac{H}{H} - \frac{H}{H} = \frac{C}{H} = \frac{C}{H}$ This candidate has very logically worked through all the information provided and has come up with the correct structure from the deductions.
Exemplar 6 Explain your mesoning and show your working. $\begin{array}{c} -C & H \\ \hline & \\ \hline \hline \\ \hline & \\ \hline \hline \\ \hline \\$
= 4.0; 6.0 ; 1
empirical formula = C4 H6 O.
Mr:(12×4)+(6×1)+@(16) = 70
FMC = 70 > mdecular faimula = 640
Age an 29 -> CHO O-CH 7 mass See
Peak at 41 > $H_2C = CH_2 CH_2 S$
IR Spectrum -> Peak at 1630-1820, indicates the presence of a C=O group -> Peak at 1620-> 1680, indicates the presence of a C=C group.
Structure = $\begin{pmatrix} 1 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$
r H H H H
Like most candidates, the crucial information about F being a <i>trans</i> isomer was not picked up so they drew the double bond in the wrong place.

		r			
6		i	$ \begin{bmatrix} H & OH \\ I & I \\ C & C \\ I & I \\ H & H \end{bmatrix}_{n(1)} $	1	
		ii	<i>Evidence against ethenol:</i> No infrared absorption between 3200 and 3600 cm ⁻¹ from O–H (1)	4	
		ii	Evidence for isomer: Infrared absorption between 1640 and 1750 cm ⁻¹ indicates C=O (1) Mass spectrum: fragmentation peak at $m/z = 29$ suggests CHO ⁺ OR fragmentation peak at $m/z = 15$ suggests CH ₃ (1) Identification: Ethanal / CH ₃ CHO (1)		ignore molecular ion peak at <i>m/z</i> confirms molecular mass of 44 g mol ⁻¹
			Total	5	
					ALLOW it is a greenhouse gas / increases temp
7			It increases / causes / contributes to global warming OR C–H bonds vibrate OR absorb IR √	1	IGNORE ozone, radicals OR acid rain Examiner's Comment: Most candidates were awarded this straightforward mark for stating that methane is a greenhouse gas. A common error was depletion of the ozone layer.
			Total	1	
			<i>Empirical / molecular formula</i> 3 <i>marks</i> Mole ratio C : H : Br is 2.44 : 5.70 : 0.814 √		ANNOTATE ANSWER WITH TICKS AND CROSSES ALLOW $\frac{29.29}{12.0}$: $\frac{5.70}{1.0}$: $\frac{65.01}{79.9}$
8	а		 (Empirical formula) = C₃H₇Br √ QWC (Molecular formula) = C₃H₇Br AND relative mass linked to 150 evidence √ 	5	Evidence could include a calculation of the relative mass of C ₃ H ₇ Br as 122.9 linking to <i>M</i> ^r being less than 150
			Structural isomers 2 marks		ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous)
			CH₃CH₂CH₂Br ✓ CH₃CHBrCH₃ ✓		DO NOT ALLOW missing H atom(s) in a displayed formula for one structure but ALLOW missing H atoms in

			subsequent structure
			Note: structures from an incorrect molecular formula will be credited on their merits. Please consult TL for advice on how to mark the subsequent parts of this question
			Examiner's Comments
			Calculation of empirical formula has always been a strength of candidates at this level. Consequently the vast majority were able to deduce the structures of the two isomers correctly. A significant number of candidates failed to secure full marks as they did not link the M _r of the empirical formula with the information about the M _r of the isomers being less than 150. Some candidates tried to use the value of 150 to determine the formula of C and D , ultimately ending up with an incorrect answer. However, error carried forward marks were allowed through subsequent parts of this question where appropriate.
			ANNOTATE ANSWER WITH TICKS AND CROSSES
b i	Infrared for G 2 marks	6	LOOK ON THE SPECTRUM for labelled peaks which can be given credit
	1700 cm ⁻¹ AND C=O/carbonyl group √ (broad) 2300–3600 cm ⁻¹ AND O–H in carboxylic acid √		ALLOW ranges from <i>Data Sheet</i> : C=O within range 1640–1750 cm ⁻¹ ; (broad) O-H within range 2500–3300 cm ⁻¹
	Structures 3 marks		ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous)
i	CH ₃ CH ₂ CH ₂ OH √		ALLOW CH ₃ CH ₂ CO ₂ H for carboxylic
	CH₃CHOHCH₃ ✓		acid IGNORE names
	CH₃CH₂COOH ✓		IGNORE labels
			DO NOT ALLOW missing H atom(s) in a displayed formula for one structure

i	Equation for formation of G 1 mark $C_3H_8O + 2[O] \rightarrow C_3H_6O_2 + H_2O \checkmark$		but ALLOW missing H atoms in subsequent structures
	2 marks for correct ester. $CH_3CH_2COOCH(CH_3)_2 \checkmark \checkmark$ Award 1 mark for: $CH_3CH_2COOCH_2CH_2CH_3$ OR Ambiguous ester: $CH_3CH_2COOC_3H_7 \checkmark$	2	ANNOTATE ANSWER WITH TICKS AND CROSSES ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) ALLOW C ₂ H ₅ CO ₂ CH(CH ₃) ₂ IF there is one bond and its H missing from the correct ester award 1 mark Examiner's Comments Most candidates were able to show the structure of the ester formed from propanoic acid (G and propan-2-ol (F) correctly. Some candidates used the incorrect alcohol, propan-1-ol (E) and such responses received only one of the two marks available.
	Total	13	

9	i	Evidence that 84 (M ⁺ peak) = 6×14 (mass of CH ₂) \checkmark e.g. $\frac{84}{14} = 6$	1	IGNORE use of molecular formula e.g $(6 \times 12) + (12 \times 1) = 84$ (use of empirical formula required) Examiner's Comments This question required candidates to use the m/z value for the molecular ion peak and the mass of the empirical formula to confirm the molecular formula of the alkene as C ₆ H ₁₂ . The most common method employed was to divide 84 by 14 to show that the molecular formula contained 6 empirical formula units. Although many candidates scored this mark, a significant proportion neglected to use the empirical formula and simply showed that the Mr of C ₆ H ₁₂ was equal to 84. Candidates should be encouraged to take note of all the supplementary information provided with a question, as it is likely to be required in the response.
	ii	Structures of species 2 marks peak I CH₃CH=CH √ peak II CH₃CH=CHCH₂CH₂ OR CH=CHCH₂CH₂CH₃ √ + charge on BOTH CORRECT species 1 mark CH₃CH=CH⁺ AND CH₃CH=CHCH₂CH₂⁺ √ peak I peak I	3	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above ALLOW 1 mark if both correct structures are shown but in the incorrect columns ALLOW 1 mark for both correct structures if one or both have an 'end bond' ALLOW 1 mark for BOTH molecular formulae correct C3H5 peak I C5H9 peak II ALLOW 'charge mark' for + charge on BOTH fragments with correct molecular formulae ALLOW 'charge mark' for + charge on BOTH CORRECT molecular formulae ALLOW + change anywhere in structures OR outside brackets Examiner's Comments In general the attempts at this question

			were good, and the majority of candidates chose to show the fragments as displayed formulae. A common incorrect response for the fragment that gave rise to peak I was CH ₃ CH ₂ C. Some candidates failed to show the positive charge on each fragment, although this was less common than in previous sessions.
	Total	4	
			LOOK ON THE SPECTRA for labelled peaks. Indicative scientific points may include: 1. Molecular formula
1 0	 Please refer to marking instructions on page 4 of mark scheme for guidance on how to mark this question. Level 3 (5–6 marks) A comprehensive description with all three scientific points explained thoroughly. C identified as a carboxylic acid containing four carbon atoms linked to the peak in the mass spectrum at 43. The explanation makes use of all the evidence including the secondary carbocation in justifying the correct structure of C. Level 2 (3–4 marks) Attempts all three scientific points but explanations may be incomplete. OR Explains two scientific points thoroughly with few omissions. The analysis is clear and includes some interpretation o IR and peaks. Level 1 (1–2 marks) A simple explanation based on at least two of the main scientific points. OR Explains one scientific point thoroughly with few errors. The analysis is communicated in an unstructured way and includes interpretation of peaks from IR OR spectrum O marks – No response worthy of credit. 	6	Element% massArmolesratioC54.5124.542H9.119.14O36.4162.281•empirical formula = C2H4O•molecular ion peak m/z or Mr = 88•molecular formula = C4H8O2 2. Infrared spectrum •peak at 2500-3500 (cm ⁻¹) is O-H•peak at 1630-1820 (cm ⁻¹) is C=O•C is a carboxylic acid ALLOW stated values within the ranges above IGNORE references to C-O peaks 3. Identifying the carboxylic acid •(CH3CH2CH2COOH OR (CH3)2CHCOOH)•Mass spectrum peak at m/z = 43 = C3H7(*)•secondary carbocation: CH3C*HCH3•compound C : (CH3)2CHCOOH

				$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array}\end{array} \\ \begin{array}{c} \\ \\ \end{array}\end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $
		Total	6	
1	а	Mole ratio C : H : O is $3.33 : 6.67 : 3.33 \checkmark$ Empirical formula is CH ₂ O \checkmark Molecular formula is C ₃ H ₆ O ₃ AND use of 90 OR 3 + 30 \checkmark	3	ALLOW $\frac{40.00}{12.0}$; $\frac{6.67}{1.0}$; $\frac{53.33}{16.0}$ ALLOW mass of C = 0.400 × 90 or 36 AND mass of H = 0.06677 × 90 or 6 AND mass of O = 0.5333 × 90 or 48 Examiner's Comments Almost all candidates were able to correctly calculate the empirical formula of L. Although the majority also deduced the correct molecular formula, not all included their working. A small, but significant, proportion of candidates

			omitted this part of the question. Candidates are advised to show all working when required.
	Evidence of carboxylic acid (1 mark) IR: 1550–1800 cm ⁻¹ AND C=O / carbonyl AND 2300–3700 cm ⁻¹ AND O–H in carboxylic acid √		ANNOTATE ANSWER WITH TICKS AND CROSSES ETC LOOK ON THE SPECTRUM for labelled peaks which can be given credit ALLOW ranges from <i>Data Sheet</i> : C=O within range 1640–1750 cm ⁻¹ ; (broad) O–H within range 2500–3300 cm ⁻¹ (broad) O–H within range 3200–3550 cm ⁻¹ For ALL structures: ALLOW correct structural OR skeletal OR displayed formula OR mixture of the above
b	Evidence of alcohol (1 mark) (broad) $3200-3700 \text{ cm}^{-1}$ linked to O-H in alcohol OR (is a primary) alcohol as oxidised (to a COOH) OR is an alcohol as it forms a carboxylic acid OR is an alcohol as water is eliminated. Identifications (2 marks) L: H H H HO C I I	5	IGNORE names FOR M: ALLOW 1 mark for
	$H H \downarrow \checkmark$ $M: \qquad H \qquad $		AS ECF from L as either HOOC C C COH HO HOC C C C OH HO H H O H HO H H OR H
			Equation: $C_3H_6O_3 + 4[O] \rightarrow C_3H_2O_5 + 2H_2O \checkmark$ ALLOW correct structural OR displayed

					suggested. Some candidates incorrectly identified the C—H peak in the spectrum as an O—H and suggested that K was a carboxylic acid.
	b		Labelled diagram showing at least one H-bond between alcohol molecule and water \checkmark e.g. H ₃ C $- \begin{pmatrix} - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	1	 IF diagram is not labelled ALLOW Hydrogen bonds / H bonds from text Diagram should include role of an O lone pair and dipole charges on each end of H bond. IGNORE alcohol R group, even if wrong ALLOW structural OR displayed OR skeletal formula OR mixture of the above Examiner's Comments The majority of candidates were able to draw a diagram to show the hydrogen bond between an alcohol and water. However, a significant proportion lacked the accuracy required at this level and failed to show the role of the lone pair. It was also common to see responses that omitted the relevant dipoles. The question asked for the inclusion of relevant dipoles and lone pairs and candidates are advised to double check diagrams to ensure these key features are not neglected.
			Total	7	
13		i	bond vibrates (more) OR bond bends (more) OR bond stretches (more) √	1	BOND essential IGNORE molecule vibrates / rotates Assume "It" refers to the molecule and is insufficient DO NOT ALLOW any reference to bond breaking DO NOT ALLOW a stated bond if not present in C and F e.g. C–O, C–H not present Examiner's Comments Most candidates identified that IR radiation would cause the bonds within the molecule to vibrate. However, there were many examples of vague responses such as 'they vibrate'. Candidates are advised identify the

				subject of their statement and avoid the use of words such as 'they' and 'it' in their responses.
				ALLOW 1 mark for Cl ₃ C AND CF ₂ Cl i.e. no + charge used
				ALLOW 1 mark for CI_3C^- AND CF_2CI^- <i>i.e.</i> — charge used on both
	ii	C/₃C ⁺ ✓	2	Examiner's Comments
		CF₂C/ ⁺ ✓		The majorly of candidates identified the formulae of the two ions, although not all candidates specified the correct charge. Candidates should be aware that fragmentation in a mass spectrometer produces positive ions.
		Total	3	
1 4		Carboxylic acids have a broad O-H absorption at $2500-3300$ (cm ⁻¹) (which ketones do not)	1	
		Total	1	
		Molecular formula for G: 2 marks		ANNOTATE ANSWER WITH TICKS AND CROSSES ETC
		Mole ratio C : H : O = $\frac{55.8}{12.0} : \frac{7.0}{1.0} : \frac{37.2}{16.0}$ OR 4.65 : 7.0 : 2.33 / 2.325 OR 2 : 3 : 1 OR C ₂ H ₃ O \checkmark		ALLOW mass of C = 0.558 × 86 or 48 AND mass of H = 0.07 × 86 or 6 AND mass of O = 0.372 x 86 = 32
		Molecular formula of G C ₄ H ₆ O ₂ \checkmark		
1 5		Mass spectrum for G: 2 marks	7	+ charge required for each response ALLOW one mark if both formulae are correct but with no charge/incorrect charge
		Peak X or peak 41 indicates C₃H₅⁺ ✓		ALLOW any possible fragments that contain C, H and / or O that have the
		Peak Y or peak 45 indicates COOH⁺ √		correct mass. E.g. Peak X indicates C_2OH^+ , Peak Y indicates $C_2H_5O^+$ Unfeasible fragments are not allowed e.g. $C_3H_9^+$ (too many H atoms)
		Infrared for G: 1 marks		LOOK ON THE SPECTRUM for labelled absorbance which can be given credit Candidates must link absorbance to bond in order to gain the mark

					chain compound. Other candidates provided a cyclic carboxylic acid. These two approaches were awarded one mark. The most common incorrect structure seen for G was butanoic acid.
	Total			7	
1 6	c % 46.1 mol 3.84 ratio 1.33 atom ratio with calculation empirical formula = C4HaC <i>IR spectrum</i> (very) broad absorption 29 AND absorption 1640–17 absorption 3450 cm ⁻¹ (alcost) <i>Identification</i> conclusion from data: cond (empirical formula confirm	Use of elemental analysis data \Box C H O $\%$ 46.1 7.7 46.2 mol 3.84 7.7 2.89 ratio 1.33 2.66 1 atom ratio with calculation empirical formula = $C_4H_8O_3$ <i>IR spectrum</i> (very) broad absorption $2500-3300 \text{ cm}^{-1}$ (COOH) AND absorption $1640-1750 \text{ cm}^{-1}$ (C=O) absorption 3450 cm^{-1} (alcohol $-OH$) <i>Identification</i> conclusion from data: compound contains $-COOH$ and $-OH$ (empirical formula confirms no other C=O than in COOH) in place of the previous chlorine-containing groups H OH $H - C - C - CH_3$			ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous
	Total			5	
1 7	 * Please refer to the mark on how to mark this quest (Level 3) Candidate provides a met AND provides all support AND gives details of reage equations. The explanation is detailed is clearly supported by det oxidation product. 	ion. hod for identifying ng evidence from ents and conditior d and well structure	the alcohols IR spectrum as and correct red. The information	6	Indicative scientific points may include Identification of alcohols Based on recognition of alcohols as primary, secondary and tertiary (stated or implied by method). Basic procedure involves reflux followed by use of IR to identify different oxidation products. Reactions • stated reagents (H ⁺ /Cr ₂ Or ²⁻ and conditions (reflux))

	(Level 2) Candidate provides a basic method AND provides some supporting evidence from IR spectrum AND gives details of reagents and conditions with some attempt at equations. The explanation has some structure. The information is supported by some details of reactions and evidence from IR spectrum. (3–4 marks) (Level 1) Candidate attempts to describe a basic method AND gives some supporting evidence from IR spectrum OR details of reagents and conditions with some attempt at equations. The explanation is basic and lacks structure. The information is supported by limited evidence from the reactions and oxidation products and would not lead to identification. (1–2 marks) No response or no response worthy of credit.		 equations using [O] including structural formulae CH₃CH₂CHOHCH₃ + [o] → CH₃CH₂COCH₃ + H₂0 CH₃CH₂CH₂CH₂OH + 2[o] → CH₃CH₂CH₂COOH + H₂o Identification of oxidation product IR: carboxylic acid from broad OH absorption and C=O IR: carbonyl / ketone from C=O and no OH tertiary alcohol from lack of C=O and OH peak in IR OR no colour change in reflux.
1 8	Total $I = C_4 H_{10^+} (1)$ $II = C_3 H_7^+ (1)$ $II = C_2 H_5^+ (1)$ $C_3 H_7^+$ could be $CH_3 CH_2 CH_2^+$ or $CH_3 CHCH_3^+$ OR $C_3 H_7^+$ could be from $CH_3 CH_2 CH_2 CH_3$ or $CH_3 CH(CH_3)_2 (1)$ $CH_3 CH_2^+$ could only be from $CH_3 CH_2 CH_2 CH_3 (1)$	5	THROUGHOUT: if any charge is missing, do not allow 1st formula but allow subsequent formulae by ecf allow + charge anywhere
	Total	5	
1 9	(broad) peak at 3300–3600 (cm ⁻¹) for O–H (therefore A or C) (1) molar ratio: C : H : O $\frac{78.94}{12.0} : \frac{10.53}{1.0} : \frac{10.53}{16.0} \text{ OR } 6.58 : 10$ (1) (1) 10 : 16 : 1 OR C ₁₀ H ₁₆ O, therefore C (1)	3	allow 3200–3600 cm ⁻¹ ignore references to the peak at ~2900 for C-H allow annotation of the spectrum to identify the bond responsible for the peak instead of quoting the wavenumber.

			Conclusion may also follow from empirical formula followed by IR data.
	Total	3	